Statistics of midbrain dopamine neuron spike trains in the awake primate.

نویسندگان

  • Hannah M Bayer
  • Brian Lau
  • Paul W Glimcher
چکیده

Work in behaving primates indicates that midbrain dopamine neurons encode a prediction error, the difference between an obtained reward and the reward expected. Studies of dopamine action potential timing in the alert and anesthetized rat indicate that dopamine neurons respond in tonic and phasic modes, a distinction that has been less well characterized in the primates. We used spike train models to examine the relationship between the tonic and burst modes of activity in dopamine neurons while monkeys were performing a reinforced visuo-saccadic movement task. We studied spiking activity during four task-related intervals; two of these were intervals during which no task-related events occurred, whereas two were periods marked by task-related phasic activity. We found that dopamine neuron spike trains during the intervals when no events occurred were well described as tonic. Action potentials appeared to be independent, to occur at low frequency, and to be almost equally well described by Gaussian and Poisson-like (gamma) processes. Unlike in the rat, interspike intervals as low as 20 ms were often observed during these presumptively tonic epochs. Having identified these periods of presumptively tonic activity, we were able to quantitatively define phasic modulations (both increases and decreases in activity) during the intervals in which task-related events occurred. This analysis revealed that the phasic modulations of these neurons include both bursting, as has been described previously, and pausing. Together bursts and pauses seemed to provide a continuous, although nonlinear, representation of the theoretically defined reward prediction error of reinforcement learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike-train communities: finding groups of similar spike trains.

Identifying similar spike-train patterns is a key element in understanding neural coding and computation. For single neurons, similar spike patterns evoked by stimuli are evidence of common coding. Across multiple neurons, similar spike trains indicate potential cell assemblies. As recording technology advances, so does the urgent need for grouping methods to make sense of large-scale datasets ...

متن کامل

Real-Time Dopamine Measurement in Awake Monkeys

Fast-scan cyclic voltammetry (FSCV) is often used to measure real-time dopamine (DA) concentrations in awake, behaving rodents. Extending this technique to work in monkeys would provide a platform for advanced behavioral studies and a primate model for preclinical research. The present study demonstrates the feasibility of DA recordings in two awake monkeys (Macaca mulatta) using a mixture of t...

متن کامل

Beyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cortex

Cortical areas differ in their patterns of connectivity, cellular composition, and functional architecture. Spike trains, on the other hand, are commonly assumed to follow similarly irregular dynamics across neocortex. We examined spike-time statistics in four parietal areas using a method that accounts for nonstationarities in firing rate. We found that, whereas neurons in visual areas fire ir...

متن کامل

A multiple filter test for change point detection in renewal processes with varying variance

Non-stationarity of the event rate is a persistent problem in modeling time series of events, such as neuronal spike trains. Motivated by a variety of patterns in neurophysiological spike train recordings, we define a general class of renewal processes. This class is used to test the null hypothesis of stationary rate versus a wide alternative of renewal processes with finitely many rate change...

متن کامل

Bayesian latent structure discovery from multi-neuron recordings

Neural circuits contain heterogeneous groups of neurons that differ in type, location, connectivity, and basic response properties. However, traditional methods for dimensionality reduction and clustering are ill-suited to recovering the structure underlying the organization of neural circuits. In particular, they do not take advantage of the rich temporal dependencies in multi-neuron recording...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 3  شماره 

صفحات  -

تاریخ انتشار 2007